

Mental Strategies (addition and subtraction)

Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10 .
Children should memorise and reason with number bonds for numbers to 20 , experiencing the $=$ sign in different positions.
They should see addition and subtraction as related operations. E.g. $7+3=10$ is related to 10 $-3=7$, understanding of which could be supported by an image like this.

00000

Use bundles of straws, cups and Dienes to model partitioning teen numbers into tens and ones and develop understanding of place value. Children have opportunities to explore partitioning numbers in different ways. e.g. $7=6+1,7=5+2,7=4+3=$

Children should begin to understand addition as combining groups and counting on.

Vocabulary

Addition, add, forwards, put together, more than, total, altogether, distance between, difference between, equals = same as, most, pattern, odd, even, digit, counting on. 'Get ready to get some more'

Mental Strategies

Children should count regularly, on and back, in steps of 2,3,5 and 10. Counting forwards in tens from any number should lead to adding multiples of 10 .

Number lines should be used in conjunction with cups to support mathematical thinking, for example to model how to add 9 by adding 10 and adjusting.

Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using $7+3=10$ to find 17 $+3=20,70+30=100$
They should use concrete objects such as cups, bead strings and number lines to explore missing numbers $-45+\ldots=50$.

As well as cups and number lines, 100 squares could be used to explore patterns in calculations such as $74+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used.
Children should learn to check their calculations, by using the inverse.
They should continue to see addition as both combining groups and counting on. They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$.

Vocabulary

+, add, addition, more, plus, make, sum, total altogether, how many more to make...? how many more is... than...? how much more is...? $=$, equals, sign, is the same as, Tens, ones, partition Near multiple of 10, tens boundary, More than, one more, two more... ten more... one hundred more

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$.
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged. This will help to develop children's understanding of working mentally.
Children should continue to partition numbers in different ways.
They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g.
Add the nearest multiple of 10 , then adjust such as $63+29$ is the same as $63+30-1$;
counting on by partitioning the second number only such as $72+31=72+30+1=102+1=103$
Manipulatives can be used to support mental imagery and conceptual understanding. Children need to be shown how these images are related eg.
What's the same? What's different?

Vocabulary

Hundreds, tens, ones, estimate, partition,
recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange
See also Y1 and Y2

- True or false? Addition makes numbers bigger.
- True or false? You can add numbers in any order and still get the same answer.
(Links between addition and subtraction) When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.

Another example here...

Some Key Questions

How many altogether? How many more to make...? I add ...more. What is the total? How many more is... than...? How much more is...? One more, two more, ten more...
What can you see here?
Is this true or false?
What is the same? What is different?

Generalisation

- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd + odd = even; odd + even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

Some Key Questions

How many altogether? How many more to make...? How many more is... than...? How much more is...? Is this true or false?
If I know that $17+2=19$, what else do 1 know? (e.g. 2 $+17=19 ; 19-17=2 ; 19-2=17 ; 190-20=170$ etc). What do you notice? What patterns can you see?

Generalisations

Noticing what happens to the digits when you count in tens and hundreds.
Odd + odd = even etc (see Year 2)
Inverses and related facts - develop fluency in
finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

Key Questions

What do you notice? What patterns can you see?
When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line?

Year 4
Written methods (progressing to more than 4-digits)

Mental methods should continue to develop, supported by a range of models and images,

Year 6

Mental methods should continue to develop supported by a range of models and images,

As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.
172.83
$+\frac{54.68}{227.51}$
111
Place value counters can be used alongside the columnar method to develop understanding of addition with decimal numbers.

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency
e.g. $12462+2300=14762$
including the number line

Written methods

Children will progress to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured.
Continue calculating with decimals, including those with different numbers of decimal places

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

including the number line.

Written methods

As with Year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured.
Continue calculating with decimals, including those with different numbers of decimal places

Problem Solving

Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of $6,7,9,25$ and 1000 , and steps of $1 / 100$.
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80 , then 3 to 77
- Reordering: $28+75,75+28$ (thinking of 28 as $25+3)$
- Partitioning: counting on or back: $5.6+3.7$, $5.6+3+0.7=8.6+0.7$
- Partitioning: bridging through multiples of 10 : $6070-4987,4987+13+1000+70$
- Partitioning: compensating - $138+69,138+$ 70-1
- Partitioning: using 'near' doubles - 160 + 170 is double 150 , then add 10 , then add 20 , or double 160 and add 10 , or double 170 and subtract 10
- Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15 pm?
- Using known facts and place value to find related facts.

Vocabulary

add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.

Mental Strategies

Children should continue to count regularly, on and back, now including steps of powers of 10 .
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to partition numbers in different ways

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards in tenths and hundredths: $1.7+0.55$
- Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$
- Partitioning: counting on or back $-540+280,540$ +200 + 80
- Partitioning: bridging through multiples of 10 :
- Partitioning: compensating: $5.7+3.9,5.7+4.0-$ 0.1
- Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1
- Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20 ?
- Using known facts and place value to find related facts.

Vocabulary

tens of thousands boundary
Also see previous years

Generalisation

Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9 .
What do you notice about the differences between consecutive square numbers?
Investigate $a-b=(a-1)-(b-1)$ represented visually.

Mental Strategies

Consolidate previous years.
Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5$; $(20-5) \times 3=45$

Vocabulary

See previous years

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.
Sometimes, always or never true? Subtracting numbers makes them smaller.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Generalisations

Investigate when re-ordering works as a strategy
for subtraction. Eg. $20-3-10=20-10-3$, but 3

- 20 - 10 would give a different answer.

Some Key Questions
What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Missing number problems e.g. $7=\square-9 ; 20-$ $\square=9 ; 15-9=\square ; \square-\square=11 ; 16-0=\square$
Use concrete objects and pictorial
representations. If appropriate, progress from using number lines with every number shown to number lines with significant numbers shown.
Understand subtraction as take-away:

Understand subtraction as finding the difference:

The above model would be introduced with concrete objects which children can move (including cards with pictures) before progressing to pictorial representation. The use of other images is also valuable for modelling subtraction e.g. Numicon, cups bundles of straws, Dienes apparatus, multilink cubes, bead strings
25; $22=\square-21 ; 6+\square+3=11$
$+1+2$

It is valuable to use a range of representations (also see Y1). Continue to use number lines to model take-away and difference. E.g.
The link between the two may be supported by an image like this, with 47 being taken away from 72 , leaving the difference, which is 25.

Written methods (progressing to 4-digits)

Expanded column subtraction with
decomposition, progressing to calculations with 4-digit numbers.

Missing number/digit problems: $456+\square=710$; $1 \square 7+6 \square=200 ; 60+99+\square=340 ; 200-90-80=$ ם; $225-\square=150 ; \square-25=67 ; 3450-1000=\square ; \square-$ $2000=900$
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods (progressing to 4-digits)

Expanded column subtraction with decomposition, modelled with place value counters, progressing to calculations with 4digit numbers.

Mental Strategies

Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10 .
Children should memorise and reason with number bonds for numbers to 20 , experiencing the = sign in different positions.
They should see addition and subtraction as related operations. E.g. $7+3=10$ is related to 10 $-3=7$, understanding of which could be supported by an image like this.

Use bundles of straws and Dienes to model partitioning teen numbers into tens and ones.

Children should begin to understand subtraction as both taking away and finding the difference between, and should find small differences by counting on.

Vocabulary

Subtraction, subtract, take away, distance between, difference between, more than, minus, less than, equals = same as, most, least pattern, odd, even, digit,

Generalisations

- True or false? Subtraction makes

Mental Strategies

Children should count regularly, on and back, in steps of $2,3,5$ and 10 . Counting back in tens from any number should lead to subtracting multiples of 10.

Number lines should continue to be an important image to support thinking, for example to model how to subtract 9 by adjusting.

Children should practise subtraction to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using 10-7=3 and $7=10-3$ to calculate $100-70=30$ and $70=100$ - 30.

As well as number lines, 100 squares could be used to model calculations such as $74-11,77-9$ or 36 14, where partitioning or adjusting are used. On the example above, 1 is in the bottom left corner so that 'up' equates to 'add'.

Children should learn to check their calculations, including by adding to check.
They should continue to see subtraction as both take away and finding the difference, and should find a small difference by counting up.
They should use Dienes to model partitioning into tens and ones and learn to partition numbers in different ways e.g. $23=20+3=10+13$.

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of $4,8,50$, and 100 , and steps of $1 / 10$
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged.
Children should continue to partition numbers in difference ways.
They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g. counting up (difference, or complementary addition) for 201 - 198; counting back (taking away / partition into tens and ones) for 201-12.

Calculators can usefully be introduced to encourage fluency by using them for games such as 'Zap' [e.g. Enter the number 567. Can you 'zap' the 6 digit and make the display say 507 by subtracting 1 number?]
The strategy of adjusting can be taken further, e.g. subtract 100 and add one back on to subtract 99. Subtract other near multiples of 10 using this strategy.

Vocabulary

Hundreds, tens, ones, estimate, partition,
recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange
See also Y1 and Y2

Generalisations

Noticing what happens to the digits when you count in tens and hundreds.
Odd - odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts. Develop the knowledge that the inverse relationship can be used as a checking method.

Key Questions

numbers smaller

- When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.
Children could see the image below and consider, "What can you see here?" e.g.

3 yellow, 1 red, 1 blue. $3+1+1=5$
2 circles, 2 triangles,
1 square. $2+2+1=$
5
I see 2 shapes with
curved lines and 3

with straight lines. $5=$
$2+3$
$5=3+1+1=2+2+1=2+3$

Some Key Questions

How many more to make...? How many more is... than...? How much more is...? How many are left/left over? How many have gone? One less, two less, ten less... How many fewer is...
than...? How much less is...?
What can you see here?
Is this true or false?

Vocabulary

Subtraction, subtract, take away, difference, difference between, minus
Tens, ones, partition
Near multiple of 10 , tens boundary
Less than, one less, two less... ten less... one hundred less
More, one more, two more... ten more... one
hundred more Generalisation

- Noticing what happens when you count in tens (the digits in the ones column stay the same)
- Odd - odd = even; odd - even = odd; etc
- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another canno†
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

 (:) () () ():)
 (:) () () ():)

$$
15+5=20
$$

Some Key Questions

How many more to make...? How many more is.. than...? How much more is...? How many are left/left over? How many fewer is... than...? How much less is...?
Is this true or false?
If I know that $7+2=9$, what else do l know? (e.g. $2+$ 7 =9; $9-7=2 ; 9-2=7 ; 90-20=70$ etc).
What do you notice? What patterns can you see?

What do you notice? What patterns can you see?
When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line

$$
+\square ; 119-\square=86 ; 1000000-\square=999000 ; 600
$$

$$
000+\square+1000=671000 ; 12462-2300=\square
$$

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods (progressing to more than 4-

digits)

When understanding of the expanded method is secure, children will move on to the formal method of decomposition, which can be initially modelled with place value counters.

stand for a different number. \# = 34. \# + \# = ロ+ $\square+$ \#. What is the value of \square ?
$10000000=9000100+\square$
$7-2 \times 3=\square ;(7-2) \times 3=\square$; $(\square-2) \times 3=15$
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with decomposition to be secured.
Teachers may also choose to introduce children to other efficient written layouts which help develop conceptual understanding. For example:
stand for a different number. \# = 34. \# + \# = $+\square+$ \#. What is the value of \square ?
$10000000=9000100+\square$
$7-2 \times 3=\square ;(7-2) \times 3=\square ;(\square-2) \times 3=15$
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

Written methods

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with decomposition to be secured.
Teachers may also choose to introduce children to other efficient written layouts which help develop conceptual understanding. For example:

-148 -2
-20
$\underline{200}$
178

326
-148
-2
-20
200
178

Mental Strategies

Children should continue to count regularly, on and back, now including multiples of 6, 7, 9, 25 and 1000 , and steps of $1 / 100$.
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80, then 3 to 77
- Reordering: $28+75,75+28$ (thinking of 28 as $25+3$)
- Partitioning: counting on or back: 5.6 + 3.7,5.6 $+3+0.7=8.6+0.7$
- Partitioning: bridging through multiples of 10 : $6070-4987,4987+13+1000+70$
- Partitioning: compensating - $138+69,138+$ 70-1
- Partitioning: using 'near' doubles - $160+170$ is double 150, then add 10, then add 20 , or double 160 and add 10 , or double 170 and subtract 10
- Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15pm?
- Using known facts and place value to find related facts.

Vocabulary

add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.

Mental Strategies

Children should continue to count regularly, on and back, now including steps of powers of 10 .
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:

- Counting forwards and backwards in tenths and hundredths: $1.7+0.55$
- Reordering: $4.7+5.6-0.7,4.7-0.7+5.6=4+5.6$
- Partitioning: counting on or back -540 + 280,540 $+200+80$
- Partitioning: bridging through multiples of 10:
- Partitioning: compensating: $5.7+3.9,5.7+4.0-$ 0.1
- Partitioning: using 'near' double: $2.5+2.6$ is double 2.5 and add 0.1 or double 2.6 and subtract 0.1
- Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20 ?
- Using known facts and place value to find related facts.

Vocabulary

tens of thousands boundary,
Also see previous years

Generalisation

Sometimes, always or never true? The difference between a number and its reverse will be a multiple of 9.
What do you notice about the differences between consecutive square numbers?
Investigate $a-b=(a-1)-(b-1)$ represented visually.

Mental Strategies

Consolidate previous years.
Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. $20-5 \times 3=5$; $(20-5) \times 3=45$

Vocabulary

See previous years

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.
Sometimes, always or never true? Subtracting numbers makes them smaller.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Generalisations
Investigate when re-ordering works as a strategy
for subtraction. Eg. $20-3-10=20-10-3$, but $3-$
20-10 would give a different answer.
Some Key Questions
What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

What's the same? What's different?
Can you convince me?
How do you know?

Understand multiplication is related to doubling and combing groups of the same size (repeated addition)
Washing line, and other practical resources for counting. Concrete objects. Numicon, cups, bundles of straws, bead strings

$5+5+5+5+5+5=30$
$5 \times 6=30$
$5 \times 6=30$
5 multiplied by 6
6 groups of 5
6 hops of 5
6 hops of 5
Problem solving with concrete objects (including money and measures Use cuissenaire and bar method to develop the vocabulary relating to 'times' -
Pick up five, 4 times
Use arrays to understand multiplication can be done in any order (commutative)

Expressing multiplication as a number sentence using x
Using understanding of the inverse and practical resources to solve missing number problems.

$7 \times 2=\square$	$\square=2 \times 7$
$7 \times \square=14$	$14=\square \times 7$
$\square \times 2=14$	$14=2 \times \square$
$\square \times \bigcirc=14$	$14=\square \times \bigcirc$

Develop understanding of multiplication using array and number lines (see Year 1). Include multiplications not in the 2,5 or 10 times tables. Begin to develop understanding of multiplication as scaling (3 times bigger/taller)

$4 \times 3=12$

double 4 is 8
$4 \times 2=8$
Doubling numbers up to $10+10$
Link with understanding scaling. Using known doubles to work out
double 2d numbers
(double 15 = double $10+$ double 5)

Written methods (progressing to 2d x 1d)

Developing written methods using
understanding of visual images

Missing number problems
Continue with a range of equations as in Year 2 but with appropriate numbers.

Mental methods

Doubling 2 digit numbers using partitioning Demonstrating multiplication on a number line - jumping in larger groups of amounts
$13 \times 4=10$ groups $4=3$ groups of 4
Continue with a range of equations as in Year 2 but with appropriate numbers. Also include equations with missing digits
$\square 2 \times 5=160$

Mental methods

Counting in multiples of 6, 7, 9, 25 and 1000, and steps of $1 / 100$.
Solving practical problems where children need to scale up. Relate to known number facts. (e.g. how tall would a 25 cm sunflower be if it grew 6 times taller?)

Written methods (progressing to $3 \mathrm{~d} \times 2 \mathrm{~d}$)

Children to embed and deepen their understanding of the grid method to multiply up 2d $\times 2 d$. Ensure this is still linked back to their understanding of arrays and place value counters.

	10	8	1	8			
10	100	80	$\times 1$	3			
			18	0		342	134
			5	4		X 18	X 18
3	30	24	23	4		13420	13420
						10736	10736
						24156	24156
	Year 4					Year 5	Year 6
Mental Strategies						Mental Strategies	Mental Strategies
Children should continue to count regularly, on and back, now including multiples of $6,7,9,25$						Children should continue to count regularly, on and	Consolidate previous years.
						back, now including steps of powers of 10. Multiply by 10, 100, 1000, including decimals (Moving	Children should experiment with order of
Become fluent and confident to recall all tables						Digits ITP)	operations, investigating the effect of positioning
$\text { to } \times 12$						The number line should continue to be used as an	the brackets in different places, e.g. $20-5 \times 3=5$;
Use the context of a week and a calendar to						important image to support thinking, and the use of	$(20-5) \times 3=45$
support the 7 times table (e.g. how many days in						informal jottings should be encouraged.	
						They should be encouraged to choose from a range	They should be encouraged to choose from a
Use of finger strategy for 9 times table.						of strategies to solve problems mentally: - Partitioning using $\times 10, \times 20$ etc	range of strategies to solve problems mentally: - Partitioning using $\times 10, \times 20$ etc
Multiply 3 numbers together						- Doubling to solve $\times 2, \times 4, \times 8$	- Doubling to solve $\times 2, \times 4, \times 8$
The number line should continue to be used as						- Recall of times tables	- Recall of times tables
an important image to support thinking, and the						- Use of commutativity of multiplication	- Use of commutativity of multiplication
use of informal jottings should be encouraged.						If children know the times table facts to 12×12. Can	If children know the times table facts to 12×12.
They should be encouraged to choose from a range of strategies:						they use this to recite other times tables (e.g. the 13 times tables or the 24 times table)	Can they use this to recite other times tables (e.g. the 13 times tables or the 24 times table)
- Partitioning using $\times 10, \times 20$ etc							
- Doubling to solve $\times 2, \times 4, \times 8$						Vocabulary	Vocabulary
Recall of times tables						cube numbers	See previous years
- Use of commutativity of multiplication						prime numbers	common factor
						square numbers	
Vocabulary						common factors	Generalisations
Factor						prime number, prime factors composite numbers	Order of operations: brackets first, then multiplication and division (left to right) before
Generalisations							addition and subtraction (left to right). Children
Children given the opportunity to investigate numbers multiplied by 1 and 0 .						Generalisation	could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of

When they know multiplication facts up to $\times 12$,
do they know what $\times 13$ is? (i.e. can they use 4×12 to work out 4×13 and 4×14 and beyond?)

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Relating arrays to an understanding of square numbers and making cubes to show cube numbers. Understanding that the use of scaling by multiples of 10 can be used to convert between units of measure (e.g. metres to kilometres means to times by 1000)

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
How do you know this is a prime number?

remembering.

Understanding the use of multiplication to support conversions between units of measurement.

Some Key Questions

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

Children must have secure counting skillsbeing able to confidently count in 2 s , 5 s and 10s.
Children should be given opportunities to reason about what they notice in number patterns.

Group AND share small quantities-

 understanding the difference between the
two concepts.

$15 * 5=3$

15 shared between 5

Sharing

Develops importance of one-to-one correspondence.
Children should be taught to share using concrete apparatus.

Grouping

Children should apply their counting skills to develop some understanding of grouping.
Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 .

$15 \div 5=3$ There are 3 groups of 5 .
Children should be able to find $1 / 2$ and $1 / 4$ and simple fractions of objects, numbers

signs and missing numbers	
$6 \div 2=\square$	$\square=6 \div 2$
$6 \div \square=3$	$3=6 \div \square$
$\square \div 2=3$	$3=\square \div 2$
$\square \div \nabla=3$	$3=\square \div \nabla$

Know and understand sharing and groupingintroducing children to the \div sign.
Children should continue to use grouping and sharing for division using practical apparatus, arrays and pictorial representations.

Grouping using a numberline

Group from zero in jumps of the divisor to find our 'how many groups of 3 are there in 15?'. $15 \div 3=5$

serennuncurnuncurar

Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array - what do you see?

$\div=$ signs and missing numbers

Continue using a range of equations as in year 2 but with appropriate numbers.

Grouping

How many 6's are in 30 ?
$30 \div 6$ can be modelled as:

Becoming more efficient using a numberline

 Children need to be able to partition the dividend in different ways.$48 \div 4=12$

Remainders

$49 \div 4=12 \mathrm{rl}$

$$
10 \text { groups }
$$

2 groups
Sharing - 49 shared between 4. How many left over?
Grouping - How many 4s make 49. How many are left over?
Place value counters can be used to support children apply their knowledge of grouping. For example:
$60 \div 10=$ How many groups of 10 in $60 ?$ $600 \div 100=$ How many groups of 100 in 600 ?

Mental Strategies
 Children should experience regular counting on

 and back from different numbers in 1 s and in multiples of 2,5 and 10 .They should begin to recognise the number of groups counted to support understanding of relationship between multiplication and division.


```
2+2+2+2+2=10
    2\times5=10
    2 multiplied by 5
    5 pairs
5 hops of 2
```

Children should begin to understand division as both sharing and grouping.

Sharing - 6 sweets are shared between 2 people. How many do they have each?

How many 2 's are in 6?

They should use objects to group and share amounts to develop understanding of division in a practical sense.
E.g. using Numicon to find out how many 5's are in 30 ? How many pairs of gloves if you have 12 gloves?

Children should begin to explore finding simple fractions of objects, numbers and quantities.
E.g. 16 children went to the park at the weekend. Half that number went swimming. How many

Year 2

Mental Strategies

Children should count regularly, on and back, in steps of $2,3,5$ and 10 .
Children who are able to count in twos, threes, fives and tens can use this knowledge to work out other facts such as $2 \times 6,5 \times 4,10 \times 9$. Show the children how to hold out their fingers and count, touching each finger in turn. So for 2×6 (six twos), hold up 6 fingers:

Touching the fingers in turn is a means of keeping track of how far the children have gone in creating a sequence of numbers. The physical action can later be visualised without any actual movement.

This can then be used to support finding out 'How many 3 's are in 18?' and children count along fingers in 3's therefore making link between multiplication and division.

Children should continue to develop understanding of division as sharing and grouping.

15 pencils shared between 3 pots, how many in each pot?

Children should be given opportunities to find a half, a quarter and a third of shapes, objects, numbers and quantities. Finding a fraction of a number of objects to be related to sharing.

They will explore visually and understand how some fractions are equivalent - e.g. two quarters is the same as one half.

Mental Strategies
 Children should count regularly, on and back, in

 steps of 3,4 and 8 . Children are encouraged to use what they know about known times table facts to work out other times tables.This then helps them to make new connections (e.g. through doubling they make connections between the 2, 4 and 8 times tables).

Children will make use multiplication and division facts they know to make links with other facts. $3 \times 2=6,6 \div 3=2,2=6 \div 3$
$30 \times 2=60,60 \div 3=20,2=60 \div 30$
They should be given opportunities to solve grouping and sharing problems practically (including where there is a remainder but the answer needs to given as a whole number) e.g. Pencils are sold in packs of 10 . How many packs will I need to buy for 24 children?

Children should be given the opportunity to further develop understanding of division (sharing) to be used to find a fraction of a quantity or measure.

Use children's intuition to support understanding of fractions as an answer to a sharing problem.
3 apples shared between 4 people $=\frac{3}{4}$

Vocabulary

See Y1 and Y2

inverse

Generalisations

Inverses and related facts - develop fluency in finding related multiplication and division facts. Develop the knowledge that the inverse relationship can be used as a checking method.

Vocabulary

share, share equally, one each, two each... group, groups of, lots of, array

Generalisations

- True or false? I can only halve even numbers.
- Grouping and sharing are different types of problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing

Some Key Questions

How many groups of...?
How many in each group?
Share... equally into...
What can do you notice?

Use children's intuition to support understanding of fractions as an answer to a sharing problem.
3 apples shared between 4 people $=\frac{3}{4}$

Vocabulary

group in pairs, 3s ... 10s etc
equal groups of
divide, \div, divided by, divided into, remainder

Generalisations

Noticing how counting in multiples if 2,5 and 10 relates to the number of groups you have counted (introducing times tables)

An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)

Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.

Some Key Questions

How many 10s can you subtract from 60?
I think of a number and double it. My answer is 8.
What was my number?
If $12 \times 2=24$, what is $24 \div 2$?
Questions in the context of money and measures
(e.g. how many 10p coins do I need to have 60p? How many 100 ml cups will I need to reach 600 ml ?)

Some Key Questions

Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have $£ 54$. How many £ 10 teddies can you buy?
What is the missing number? $17=5 \times 3+$

$$
-=2 \times 8+1
$$

Year 4

$\div=$ signs and missing numbers

Continue using a range of equations as in year 3 but with appropriate numbers.

Year 5
$\div=$ signs and missing numbers
Continue using a range of equations but with appropriate numbers

Year 6

$\div=$ signs and missing numbers

Continue using a range of equations but with appropriate numbers

Sharing and Grouping

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding. Children should progress in their use of written division calculations:

- Using tables facts with which they are fluent
- Experiencing a logical progression in the numbers they use, for example:

Formal Written Methods

Formal short division should only be introduced once children have a good understanding of division, its links with multiplication and the idea of 'chunking up' to find a target number (see use of number lines above)
Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3 digit dividends. E.g. fig 1

Sharing and Grouping

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line as appropriate. Quotients should be expressed as decimals and fractions

Formal Written Methods - Iong and short division

E.g. $1504 \div 8$

E.g. $2364 \div 15$

Formal Written Methods

Sharing and Grouping

Children will continue to explore division as sharing and grouping, and to represent calculations on a number line as appropriate. Quotients should be expressed as decimals and fractions

Formal Written Methods - long and short

division

E.g. $1504 \div 8$

E.g. $2364 \div 15$

Formal short division should only be introduced once children have a good understanding of division, its links with multiplication and the idea of 'chunking up' to find a target number (see use of number lines above)
Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3 digit dividends. E.g. fig 1

Mental Strategies

Children should experience regular counting on and back from different numbers in multiples of
$6,7,9,25$ and 1000.
Children should learn the multiplication facts to 12×12.

Vocabulary

see years 1-3

divide, divided by, divisible by, divided into
share between, groups of
factor, factor pair, multiple
times as (big, long, wide ...etc)
equals, remainder, quotient, divisor
inverse
Towards a formal written method

Mental Strategies multiples, and powers of 10,100 and 1000 , building fluency.
Children should practice and apply the multiplication facts to 12×12.

Vocabulary

see year 4
common factors
prime number, prime factors
composite numbers
short division
square number
cube number inverse
power of

Mental Strategies
Children should count regularly, building on previous work in previous years.
Children should practice and apply the multiplication facts to 12×12.

Vocabulary

see years 4 and 5

Generalisations

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as PEMDAS, or could be encouraged to design their own ways of remembering.

Alongside pictorial representations and the use of models and images, children should progress onto short division using a bus stop method.

Place value counters can be used to support children apply their knowledge of grouping. Reference should be made to the value of each digit in the dividend.

Each digit as a multiple of the divisor

'How many groups of 3 are there in the
hundreds column? '
'How many groups of 3 are there in the tens column?’
'How many groups of 3 are there in the units/ones column?'

112	
3	336

When children have conceptual understanding and fluency using the bus stop method without remainders, they can then progress onto 'carrying' their remainder across to the next digit.

Generalisations

True or false? Dividing by 10 is the same as dividing by 2 and then dividing by 5 . Can you find any more rules like this?

Generalisations

The $=$ sign means equality. Take it in turn to change one side of this equation, using multiplication and
division, e.g.
Start: 24 = 24
Player 1: $\mathbf{4 \times 6} \mathbf{~ = ~} \mathbf{2 4}$
Player 2: $\mathbf{4 \times 6} \mathbf{= 1 2 \times 2}$
Player $1: \mathbf{4 8} \div \mathbf{2 = 1 2 \times 2}$
Sometimes, always, never true questions about multiples and divisibility. E.g.:

- If the last two digits of a number are divisible by 4 , the number will be divisible by 4 .
- If the digital root of a number is 9 , the number will be divisible by 9 .
- When you square an even number the result
 will be divisible by 4 (one example of 'proof' shown left)

Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4, it will also be divisible by 12. (also see year 4 and 5, and the hyperlink from the Y5 column)

Using what you know about rules of divisibility, do you think 7919 is a prime number? Explain your answer.

Some Key Questions for Year 4 to 6 What do you notice? What's the same? What's different?别 How do you know?

Is it sometimes, always or never true that $\square \div \Delta=$

$\Delta \div \square$?
Inverses and deriving facts. 'Know one, get lots free!' e.g.: $2 \times 3=6$, so $3 \times 2=6,6 \div 2=3,60 \div 20$ $=3,600 \div 3=200$ etc.

Sometimes, always, never true questions about multiples and divisibility. When looking at the examples on this page, remember that they
may not be 'always true'!) E.g.:

- Multiples of 5 end in 0 or 5 .
- The digital root of a multiple of 3 will be 3 , 6 or 9.
- The sum of 4 even numbers is divisible by 4.

